Sepsis induces the transcription of the glucocorticoid receptor in skeletal muscle cells.

نویسندگان

  • Xiaoyan Sun
  • Joshua M V Mammen
  • Xintian Tian
چکیده

Evidence from a recent study indicates that glucocorticoids (GCs) mediate skeletal muscle proteolysis during sepsis via the GC receptor (GR) pathway. Attempts to identify the mechanisms regulating GR gene expression in skeletal muscle during sepsis have been hampered by the lack of an appropriate in vitro model system that can mimic in vivo septic conditions. In the present study, we report that GR gene transcription in L6 myocytes in vitro is up-regulated by treatment with sera from septic rats in a manner similar to that measured in septic rats in vivo. Sera from septic rats were collected from animals in which sepsis was induced by caecal ligation and puncture and from control rats that were sham-operated. Finally, by treating L6 myotubes with the GR antagonist RU 38486, thereby preventing sepsis-induced GR transcription, we confirmed that the possible septic effect on the GR was due to increased GCs. L6 myocytes treated with sera from septic rats might therefore be useful as an experimental model for identifying the molecular mechanisms by which the GR regulates muscle cachexia during sepsis. Furthermore, RU 38486 inhibited the sepsis-induced increase in total and myofibrillar energy-dependent protein breakdown rates in incubated extensor digitorum longus muscles from septic and sham-operated rats, as measured by release of tyrosine and 3-methylhistidine respectively. Our results demonstrate for the first time that sepsis induces GR transcription in skeletal muscle, and supports the hypothesis that the GC-induced proteolysis under sepsis is partially a consequence of GR activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of GILZ in protein metabolism of L6 muscle cells exposed to serum from septic rats.

Sepsis is a complex inflammatory response to infection, associating with dramatic metabolic disorders. Although the mechanisms of immune response during sepsis have been largely clarified, current studies rarely pay attention to the disordered protein metabolism in sepsis. In this study, L6 rat skeletal muscle cells treated with serum from septic rats were used as an in vitro model for sepsis-l...

متن کامل

C/EBP DNA-binding activity is upregulated by a glucocorticoid-dependent mechanism in septic muscle.

Sepsis-induced muscle cachexia is associated with increased expression of several genes in the ubiquitin-proteasome proteolytic pathway, but little is known about the activation of transcription factors in skeletal muscle during sepsis. We tested the hypothesis that sepsis upregulates the expression and activity of the transcription factors CCAAT/enhancer binding protein (C/EBP)-beta and -delta...

متن کامل

PPARβ/δ Regulates Glucocorticoid- and Sepsis-Induced FOXO1 Activation and Muscle Wasting

FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) upregulates muscle FOXO1 expression and activity with a downstream upregulation of atro...

متن کامل

Expression and binding activity of the glucocorticoid receptor are upregulated in septic muscle.

We examined the influence of sepsis, induced by cecal ligation and puncture in rats, on the protein and gene expression and hormone binding activity of the glucocorticoid receptor (GR) in skeletal muscle. Sepsis resulted in increased GR mRNA and protein levels and upregulated hormone binding activity in extensor digitorum longus and soleus muscles. Scatchard analysis suggested that the increase...

متن کامل

Sepsis and glucocorticoids upregulate p300 and downregulate HDAC6 expression and activity in skeletal muscle.

Muscle wasting during sepsis is in part regulated by glucocorticoids. In recent studies, treatment of cultured muscle cells in vitro with dexamethasone upregulated expression and activity of p300, a histone acetyl transferase (HAT), and reduced expression and activity of the histone deacetylases-3 (HDAC3) and -6, changes that favor hyperacetylation. Here, we tested the hypothesis that sepsis an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical science

دوره 107 6  شماره 

صفحات  -

تاریخ انتشار 2003